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ABSTRACT 

In this paper Chaos Collocation method coupled to Fictitious Domain approach has been applied to one- 
and two-dimensional elliptic problems defined on random domains in order to demonstrate the accuracy 
and convergence of the methodology. Chaos Collocation method replaces a stochastic process with a set 
of deterministic problems, which can be separately solved, so that the big advantage of Chaos Collocation 
is that it is non-intrusive and existing deterministic solvers can be used. For the analysis of differential 
problems obtained by Chaos Collocation, Fictitious Domain method with Least-Squares Spectral Element 
approximation has been employed. This algorithm exploits a fictitious computational domain, where the 
boundary constraints, immersed in the new simple shaped domain, are enforced by means of Lagrange 
multipliers. For this reason its main advantage lies in the fact that only a Cartesian mesh, that represents 
the enclosure, needs to be generated. Excellent accuracy properties of developed method are 
demonstrated by numerical experiments. 

1.0 INTRODUCTION 

In most engineering applications, to solve physical problems deterministic mathematical models are 
adopted. It is evident these models are rough simplifications of reality. Actually, many physical input 
parameters are not deterministic entities, but stochastic processes which certainly influence the behaviour 
of solution. In order to obtain reliable results uncertainty quantification is necessary and the influence of 
inherent physical and geometric uncertain parameters must not be neglected. Thanks to the increasing of 
computer facilities and the advance of algorithms, which leads to more accurate solutions, the current state 
of technology allows including these inherent uncertainties in mathematical models.  

There have been an increasing interest in uncertainty analysis applied to computational physics and 
probabilistic methods have been developed. These methods for uncertainty quantification can be divided 
into two main categories: non-intrusive, or statistical, and intrusive, or non-statistical. Monte Carlo [3], 
Stochastic Collocation [16], Chaos Collocation [13] are examples of non-intrusive approaches, Chaos 
Polynomials [34][36] are examples of intrusive approaches. Non-intrusive methods allow the use of 
existing deterministic solvers, whereas intrusive approaches need to modify the solver obtaining an 
efficient tool but limited to solve just a set of problems.  

In literature there are several examples of numerical methods to face problems with uncertain input 
parameters and in [14][30][33][34][35] we find applications of these methodologies to thermo-fluid 
dynamics. In these works the effort is focused on exploring random material properties or random 
boundary conditions, whereas the topology of domain boundaries are described in deterministic terms, 
without taking in account of their stochastic nature (Figure 1).  
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On the contrary there are really few examples of numerical methods to analyse geometric uncertainty, 
which means to solve deterministic problems, in terms of material properties and boundary constraints, on 
random domains (Figure 2), with geometric uncertainty given by shape tolerance.  

In [11][36], geometric uncertainty pertains to roughness, which is an important thermo-fluid dynamic 
parameter. In particular [11] presents an analytical model to study the roughness in supersonic flow and 
the analytical results are compared with several Polynomial Chaos methodologies, such as mapping, 
Stochastic Collocation and Sparse Grid. In [36] the fluid dynamics in rough channels is studied using a 
mapping methodology. The obtained results confirm Chaos methods are suitable to study geometric 
uncertainty given roughness. 

 

Figure 1: Differential problem with stochastic material properties and stochastic boundary 
conditions, where θ is uncertainty. 

 

Figure 2: Differential problem with stochastic definition domain, where θ is uncertainty. 

Another interesting topic pertaining to geometric uncertainty is the study of shape tolerance and its 
interaction with the state problem. In [8] the influence of geometric tolerance on fluid dynamic field is 
shown, referring to an angle. A Chaos methodology is used to explore the random domain, in particular a 
non-intrusive approach.  

In this work we present a method to face geometric tolerance problems, which allows avoiding the 
limitations of previous referred methodologies, in particular both the difficulty of mapping space variables 
into a deterministic domain and the need to remesh the geometry of domain.  

Pursuing this purpose, we present a new method based on the coupling of Chaos Collocation method and 
Fictitious Domain approach. According to Generalized Polynomial Chaos theory, a stochastic process can 
be expressed as a spectral expansion based on suitable orthogonal polynomial with weights associated 
with a particular density. For non-intrusive approach, a Collocation projection is applied in the random 
dimension and the resulting system of deterministic equations is then solved to obtain the solution for each 
random node of nodal approximation. The important advantage of using a non-intrusive method is there is 
no need to modify the solver of deterministic equations, simplifying the management of computational 
process.  
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To solve the deterministic problem Least Squares Spectral Element Method is used [4][19][20][21][22] 
[23]. Moreover a Fictitious Domain approach is adopted, introducing more benefits to methodology. 

Fictitious Domain methods allow problems formulated on an intricate domain Ω to be solved on a simpler 
domain Π containing Ω. The extension of original problem to fictitious region Π/ Ω must be chosen so 
that the solution of extended problem restricted to Ω coincides with the solution of original problem. 
There are several approaches to implement Fictitious Domain: Elimination method [37], Penalty method 
[24][37], Distributed  Lagrangian method [5][6][7], Boundary Lagrangian method [9][29], Fat Boundary 
method [17]. A technique which is popular, given its efficiency, is to enforce the boundary conditions by 
Lagrange multipliers, which is the method we propose in this paper. The main motivation for Fictitious 
Domain approach is that, defining the extended problem on a simple domain, enables the use of efficient 
discretization methods on simple structured grids.  In this way the solution of state problem is independent 
by small variations of domain Ω subject to uncertainty and contained into computational domain Π, which 
is independent by random geometric parameters. Thereby an evident further advantage of the method is 
that the remeshing of computational domain for each random node solution has no more to be performed. 

The excellent accuracy of proposed methodology, Chaos Collocation method and Fictitious Domain with 
Least-Squares Spectral Element approximation, is demonstrated by numerical experiments.  

The paper is organized as follows. In Section 2.0 some details are given about uncertainty quantification 
methods. In Section 3.0 the approaches to face problems with geometric uncertainties are discussed.  In 
Section 4.0 the Fictitious Domain method is illustrated and its good accuracy properties are demonstrated 
by numerical experiments. In Section 5.0 the formulation of Chaos Collocation Method with Fictitious 
Domain approach is explained and in Section 6.0 some numerical examples to validate the Chaos 
Collocation Method with Fictitious Domain approach are shown. In Section 7.0 we give some concluding 
remarks.  

2.0 UNCERTAINTY QUANTIFICATION METHODS 

2.1 Setting of the problem: stochastic differential equation 
In this section the Generalized Polynomial Chaos is explained in order to solve the following stochastic 
differential equation: 

( ) ( )θφθ ,,;,, tftL xx =                                                                                                                                (1) 

where L  is a differential operator which contains space and time differentiation and can be non linear and 
depended on random parameters θ , ( )θφ ,, tx  is the solution and function of the space dℜ∈x , time t  
and random parameters θ ; ( )θ,,tf x  is a space, time and random parameters dependent source term. 

2.2 The Generalized Polynomial Chaos 
Under specific conditions [28], a stochastic process can be expressed as a spectral expansion based on 
suitable orthogonal polynomial with weights associated with a particular density. The first study in this 
field is the Wiener process [31][32], which can be written as a spectral expansion in terms of Hermite 
polynomials with normal distributed input parameters. 

The basic idea is to project the variables of the problems on a stochastic space modelled by a set of 
eigenfunctions Ψ  that depend on random variables )(θξ , where θ  is the random event. For example, the 
variable φ  has the following spectral finite dimensional representation:  
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( ) ( ) ( )( )∑
∞
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,,,
i
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In practical terms the Eq.(2) divides the random variables ( )θφ ,, tx  into a deterministic part, the 
coefficient ( )ti ,xφ , and a stochastic part, the polynomial chaos ( )( )θξiΨ . 

The basis { }iΨ  is a set of orthogonal polynomials with respect to the probability density function of the 
input parameters. Following the Askey scheme [2], it is possible to introduce the Generalized Polynomial 
Chaos [35]; thanks to this theory, known also as Askey-chaos, for certain input parameter distribution there 
exist the best representation in terms of convergence rate. For example, for Gaussian random input, we 
have the Hermite Polynomial Chaos representation, for Gamma distribution the Laguerre representation, 
for Beta distribution the Jacoby representation, for Uniform distribution the Legendre representation, etc. 

In this paper we focus mainly on Gaussian random input, so we represent the variable ( )θφ ,, tx  in terms 
of Hermite spectral representation (following the Askey terms): 
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where ( )
piipH ξξ ,,

1
…  is the Hermite polynomial of order p  in terms of a n -dimensional Gaussian 

random variable ( )nξξ ,,1 …=ξ  distributed as ( )1,0N . 

The Hermite polynomial is expressed in general form by: 
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and for one-dimensional case: 

…,3,1,,1 3
3

2
210 ξξξξ −=−=== HHHH                                                                             (5) 

For practical cases, the series has to be truncated to a finite numbers of terms, here denoted with N . So 
the form Eq.(2), using the one-to-one correspondence between the function ( )

piipH ξξ ,,
1
…  and ( )ξpΨ   as 

demonstrating in [33] for Gaussian random input, becomes: 

( ) ( ) ( )∑
=

=
N

i
ii Htt

0
,,, ξxx φθφ                                                                                                                          (6) 

The number of total terms of the series is determined by: 

( )
!!

!1
pn
pnN +

=+                                                                                                                                          (7) 

UNCLASSIFIED/UNLIMITED 

UNCLASSIFIED/UNLIMITED 



Fictitious Domain with Least-Squares Spectral Element  
Method to Explore Geometric Uncertainties by Chaos Collocation 

RTO-MP-AVT-147 36 - 5 

where n  is the uncertainties dimensionality and p  is the expansion order. 

As an example, for a second order 2-D Hermite polynomial expression, we get the following form: 

( ) ( )
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                                                                       (8) 

where )(1 θξ  and )(2 θξ  are the two random independent variables. 

2.3 Chaos Polynomial and Chaos Collocation 
Substituting the Polynomial Chaos series, given in Eq.(6) for Gaussian random input, into the stochastic 
differential Eq.(1) we obtain: 

( ) ( )( ) ( )θθξφθ ,,,;,,
0

tfttL
N

i
ii xxx ≅








Ψ∑

=

                                                                                                  (9) 

The method of Weighted Residuals is adopted to solve this equation. The coefficients ( )ti ,xφ  are obtained 
imposing the inner product of the residual with respect to a weight function is equal to zero.  

If the weight functions are chosen to be the same as the expansion functions iΨ  we produce Galerkin 
method. Performing the Galerkin projection on both sides of the equation, the form becomes: 

( ) ( ) NjtfttL jj

N

i
ii ,,0,,,,,;,,

0
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
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
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=

θφθ xxx .                                                            (10) 

If the operator L  is non linear, the deterministic set of 1+N  equation is coupled and this intrusive form 
is called Chaos Polynomial.  

If we employ Dirac delta function as weight function we produce Collocation method. Using a Collocation 
projection on both sides of Eq.(9), we obtain: 

( ) ( ) NjtftL jj ,,0,,;,, …== θφθ xx .                                                                                              (11) 

This formulation is a linear system equivalent to solving a deterministic problem at each grid point; this 
non-intrusive form is called Chaos Collocation. 

To reconstruct the stochastic solution ( )θφ ,, tx , the Eq.(2) is used: 

( ) ( )tEPC ,0 xφµφ φ ==                                                                                                                               (12) 

( ) ( ) 2

1
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Here 
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where ijδ  is the Kronecker operator.  

The two approaches are based on the same theory, but gives different numerical representations. In 
practice intrusive Chaos Polynomial method consists in resolution of a coupled system of deterministic 
equations, non-intrusive Chaos Collocation method consists in resolution of a decoupled system of 
deterministic equations. It is evident the difficulty to design an efficient intrusive solver, both because of 
computational cost and because of the obvious handicap to imply an internal modification of the 
deterministic solver [12]. The non-intrusive methodology has a simpler computational management. A 
remarkable advantage of this approach is the deterministic solver represents a black-box and there is no 
need to modify it. This means the non-intrusive method is more versatile than intrusive method. 

A still open problem of Chaos Collocation approach [14] is the difficulty to select collocation points: with 
multi dimensional uncertainties the choice is not unique [8]. This problem does not exist for one stochastic 
parameter, because collocation points are the roots of polynomial of order 1+p . 

In this paper we focus our attention on geometric tolerances employing Chaos Collocation method and 
Fictitious Domain approach. As the goal is a better comprehension of the problem, for sake of simplicity 
we will just consider one uncertain parameter with Gaussian distribution, using Hermite polynomials for 
expansion. In this way we avoid the difficulty of arbitrary choice of collocation points for multi 
dimensional non-intrusive method.  

3.0 GEOMETRIC UNCERTAINTIES 

The uncertainty we want to examine is due to geometric tolerance. In this case the geometry of definition 
domain is a stochastic phenomenon. The problem under study, as defined in [36], writes: 

Let Θ∈θ  be a random realization drawn from a complete probability space ( )PA,,Θ , whose event 
space Θ  generates its σ -algebra Θ⊂ 2A  and is characterized by a probability measure P . For all   

Θ∈θ , let ( ) dℜ⊂Ω θ  be a d -dimensional random domain bounded by boundary ( )θΩ∂ . We consider 
the following stochastic boundary value problem: for P -almost everywhere in Θ , given ( ) ℜ→Ω θ:f  
and ( ) ℜ→Ω θ:g , find a stochastic solution ( ) ℜ→Ω θ:v  such that: 

( ) ( ) ( )
( ) ( ) ( )θ

θ
Ω∂=

Ω=
ongvB
infvA

xx
xx

;
;

                                                                                                     (15) 

where ( )dxx ,,1 …=x , A  is a differential operator and B  is a boundary operator. 

Except for a few studies, random domain problems have not been systematically analyzed. The most 
complete work on these topics is presented in [36], where a mapping methodology is introduced to 
transform the original problem defined in a random domain into a stochastic problem defined in a 
deterministic domain. In particular a one-to-one mapping function and its inverse are established: 

( )θ,xξξ =  and ( )θ,ξxx = , which transforms the random domain ( ) dℜ⊂Ω θ  into a deterministic 

UNCLASSIFIED/UNLIMITED 

UNCLASSIFIED/UNLIMITED 



Fictitious Domain with Least-Squares Spectral Element  
Method to Explore Geometric Uncertainties by Chaos Collocation 

RTO-MP-AVT-147 36 - 7 

domain dℜ⊂ω , whose coordinates are denoted as ( )dξξ ,,1 …=ξ . I.e., for P -almost everywhere 

Θ∈θ , ( ) ωθ ∈↔Ω∈ ξx . The stochastic mapping  transforms the deterministic differential operators 
A  and B  into their stochastic counterparts A  and B , respectively, and the random domain problem into 

the following stochastic boundary-value problem. For P -almost everywhere Θ∈θ , given 
ℜ→Θ×ω:f  and ℜ→Θ×ω:g , find a stochastic solution ℜ→Θ×ω:u  such that 

( ) ( )
( ) ( ) ωθθ

ωθθ
∂=

=
onu
inu

,;,
,;,

ξξ
ξξ

gB
fA

                                                                                                  (16) 

where f  and g  are the transformed functions of f  and g , respectively. 

This methodology has been efficiently implemented to solve two diffusion problems: in a channel with 
rough surface  and in double-connected domains with rough exclusion. The drawback of the presented 
method is the difficulty of mapping.  In fact this process is simple for connected domains, but it is 
computationally challenging for complex non-connected domains. 

To ride over this problem, i.e. the mapping of complex domains, in this work we present the coupling of 
Chaos Collocation method and Fictitious Domain approach for geometric uncertainties. The idea is to 
avoid the mapping of stochastic domain onto a deterministic domain and to use absolute coordinates, so 
that the geometric uncertainty becomes an uncertainty on the position of boundary condition. 

As an example, let us consider the following problem: 
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                                                                             (17) 

Eq.(17) is a stochastic domain problem where the length L  of domain has a normal distribution with 
mean equal to 100 and variance equal to 1. 

If we adopt the mapping method presented in [36], Figure 3 shows this approach referred to problem 
Eq.(17). The stochastic mapping of ( ) [ ]L,0=Ω θ  onto [ ]1,0=ω  is constructed via solution of Laplace 
equations: 

( ) ( ) Lxandxwithinx
===

∂
∂ 10002

2

ω
ξ

                                                                   (18) 

and the new stochastic problem defined on a deterministic domain, thanks to this mapping, can be solved 
by already existing Polynomial Chaos techniques.  
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Figure 3: Stochastic domain problem Eq.(17) with normal distribution of length L. Illustration of 
mapping technique. 

Figure 4 shows our approach, where geometric uncertainty, represented by probabilistic distribution ( )LP  
of domain length L , becomes an uncertainty on the position of boundary condition. Therefore there is no 
need of mapping the stochastic domain onto a deterministic domain: every point of domain is studied in 
absolute coordinates. The solution of the problem has a probability distribution ( )φpdf  associated to each 
point of domain in absolute coordinates. This probability distribution of the solution depends on the 
position of boundary condition in Lx = , which is a stochastic phenomenon. Obviously each point has a 
probability ( )xP  of belonging to domain, as shown in Figure 4, which depends on the probabilistic 
distribution of L . 

 

Figure 4: Stochastic domain problem Eq.(17) with normal distribution of length L . Illustration of 
our approach using absolute coordinates. 

To find the solution of stochastic problem Eq.(17), exploiting the Chaos Collocation approach given in 
Eq.(11), we have to solve N  distinct deterministic problems defined on different lengths of domain. 

It could be remarked the drawback of our method is the need to modify the computational domain for 
every different simulation. So, if we can not solve analytically the differential equations, we have to 
remesh the computational domain for each new simulation and the difficulty to have an accurate grid for 
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every geometry is well-known. To avoid this problem we introduce Fictitious Domain methodology, so 
that the stochastic domain does not coincide with the computational domain, which is the same for all 
simulations. The boundary conditions, immersed in the computational domain, are enforced by means of 
Lagrange multipliers and for each new geometry there is no need to modify the computational grid but just 
to recompute the data related to immersed boundaries. 

4.0 FICTITIOUS DOMAIN VIA LAGRANGE MULTIPLIERS WITH LEAST-
SQUARES SPECTRAL ELEMENT METHOD 

4.1 Fictitious Domain approach 
Fictitious domain approach allows solving easily differential problems defined on domain changing in 
time and space, i.e. in general structural elastic problems, fluid dynamics problems with moving rigid 
bodies, shape optimization problems, and so on. This means the same problem is solved on different 
domains.  

In general to front these problems the boundary variation technique is used, based on a sequence of 
domains (Figure 5). Using a method based on domain discretization, such as finite element method, 
spectral elements, finite volumes, after the shape variation the computational domain has to be remeshed, 
the data of state problem have to be recompute and the update problem has to be solved. It is evident this 
requires high computing time. Moreover it is difficult to find a partition of domain such that grid quality is 
good for every domain.  

 

Figure 5: Classical approach based on the boundary variation technique to solve differential 
problems defined on domain changing in time and space. 

In this case it is useful to consider a Fictitious Domain approach (Figure 6), where computational domain 
is not the same of definition domain, but it contains that one, so when the definition domain changes the 
computational domain does not change with evident advantages. The need of such kind of tool is 
confirmed by experience. 

Several variants of Fictitious Domain method exist: the basic idea is to extend the operator and the domain 
into a larger simple shaped domain. The most important ways to do this are algebraic and functional 
analytic approaches. In algebraic Fictitious Domain methods the problem is extended typically at algebraic 
level in such a way that the solution of original problem is obtained directly as a restriction of the solution 
of extended problem without any additional constraint. There are several variants of such an approach 
[15][26] and they can be rather efficient, but typically they are restricted to quite a narrow class of 
problems.  
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Figure 6: Fictitious Domain approach to solve differential problems defined on domain changing 
in time and space.  

More flexibility and better efficiency can be obtained by using a functional analytic approach where the 
use of constraints ensures that the solution of extended problem coincides with the solution of original 
problem. In our implementation we enforce constraints by Lagrange multipliers [18]. 

The physical aspects of the problem can always be stated in a variational principle form. A variational 
principle specifies a scalar quantity, the functional J , which is defined by an integral form  

∫∫
ΓΩ

Γ
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
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
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∂
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∂
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FJ ………… ,,,,,,,,,,,, φφφφφφ                                                    (19) 

in which Ω∂=Γ , φ  is the unknown function and F  and E  are specified operators. The solution to the 
continuum problem is a function φ   which make J  stationary with respect to small changes δφ ; thus, for 
a solution to the continuum problem, the variation is 0=Jδ .   

To implement the Fictitious Domain approach we have to extend the operator F  and the domain Ω  into 
a larger simple shaped domain Π  and to constrain the functional on Ω∂=Γ  (Figure 7). To treat such 
problems Lagrangian multipliers are introduced, so that the problem is now equivalent to find the 
stationary point of 'J , where 

( ) .,,,,,,,,,,,,' ∫∫
ΓΠ

Γ







∂
∂

∂
∂

+Ω







∂
∂

∂
∂

= dyx
yx

Edyx
yx

FJ ………… φφφλφφφ x                                            (20) 

Here )(xλ  is an undetermined multiplier which is in general a function of position, because the local 
condition must be satisfied  at every point of Γ , rather than being a global restriction.  

 

Figure 7: Example of a fictitious rectangular domain Π containing the original domain Ω. Π 
represents the computational domain, Ω is the definition domain of the state problem.   
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New approach, we present in this paper, is the coupling of Fictitious Domain together with a high order 
method. To discretize the problem under study we use the Least Squares Spectral Element Method, based 
on higher order functions, locally defined over finite size parts of domain. The Least Squares Spectral 
Element Method (LSQSEM) combines the least squares formulation with a spectral element 
approximation. This provides several advantages. The method produces symmetric positive definite linear 
systems for every type of partial differential equation, i.e. elliptic, parabolic and hyperbolic equations. No 
compatibility requirements need to be imposed between approximating function spaces for mixed 
problems. The method converges just as fast with hp refinement than conventional Galerkin methods. 
Furthermore, no stabilization is required for convection dominated flows.  Moreover using Fictitious 
Domain approach, where extended problem is defined on a simple domain, enables the use of efficient 
computational grids, in our case just simple Cartesian grids.  

Good accuracy properties of the method are demonstrated by numerical experiments. 

4.2 Least-Squares variational principle 

Let Ω  be the closure of an open bounded region Ω  in dℜ , where d represents the number of space 
dimensions, and let ( )dxx ,,1 …=x  be a point in Ω∂∪Ω=Ω , where Γ=Ω∂  is the boundary of Ω . 
We consider the model problem stated as follows:  

Find ( )xφ  such that 

( )
( )θφφ
θφ

Γ=
Ω=∆−

on
inf

s

                                                                                                                      (21) 

where  f   is the source term and sφ  is the prescribed value of φ  on boundary Γ .  This problem is chosen 
only for notational simplicity; our statements are also valid for every type of deterministic differential 
problem, i.e. elliptic, parabolic and hyperbolic equations.  

Although direct application of the least squares variational principles to Eq.(21) is possible, it will result in 
an impractical least squares finite element model, as these have associated with them the requirement of 
higher regularity of the finite element spaces. The degree of necessary smoothness is dictated by the 
differentiability requirements of the governing equation under consideration. Moreover, the resulting 
condition number of the corresponding discrete problem would be much higher compared with the 
condition number resulting from application of the weak form Galerkin method to the same problem.  

To reduce the higher regularity requirements, the governing equations are first transformed into an 
equivalent first-order system. Transformation of the governing equations to an equivalent first-order 
system necessarily implies that additional independent variables need be introduced, implying an increase 
in cost. However, the auxiliary variables may be argued to be beneficial as they may represent physically 
meaningful variables, e.g. fluxes, and will be directly approximated in the model.  

We proceed by replacing the problem, Eq.(21), with its first-order equivalent system:  

Find ( )xφ  and ( )xq   such that 
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( )
( )
( )
( )θφφ
θ
θφ
θ

Γ=
Ω=×∇
Ω=−∇
Ω=⋅∇−

on
in
in
inf

s

0
0

q
q
q

                                                                                                           (22) 

where q  is a vector valued function whose components are the fluxes of scalar function φ , as defined in 
second Eq.(22). Third Eq.(22) is a curl constraint to ensure H1-coercivity of the system.  

For 0≥s , we use the standard notation and definition for the Sobolev spaces ( )ΩsH  and ( )ΓsH  with 
corresponding inner products denoted by ( ) Ω⋅⋅ ,, s  and 

Γ
⋅⋅

,
,

s
 and norms by 

Ω
⋅

,s
 and 

Γ
⋅

,s
, respectively. 

We denote the ( )Ω2L  and ( )Γ2L  inner products by ( )Ω⋅⋅,  and 
Γ

⋅⋅, , respectively. By ( )ΩsH  we denote 

the product space ( )[ ]dsH Ω .  

In the least-squares approach, the variational problem is such that the function φ  and its flux q  minimize 
the sum of the squares of the residuals of the governing equations measured in the 2L  norm. The 
associated functional is given by 

( ) .
2
1

2
1

2
1;, 2

,0

2

,0

2

,0 ΩΩΩ
×∇+−∇+−⋅∇−= qqqq φφ ffJ                                                                (23) 

According to Fictitious Domain methodology the problem will be extended to a simple shaped domain 
Ω⊃Π  with immersed constraints enforced via Lagrange multipliers.  

So the new functional associated with the equivalent Fictitious Domain problem will be: 

( ) ( )
ΓΠΠΠ

−+×∇+−∇+−⋅∇−=
,0

2

,0

2

,0

2

,0 2
1

2
1

2
1,;., ss ffJ φφλφφλφ qqqq                              (24) 

where the Lagrange multiplier defined on Γ  is denoted by λ , with µ  the associated weight function.  

The least squares principles for functional Eq.(24) can be stated as:  

Find ( ) M×∈ Xq λφ ,,  such that for all ( ) M×∈ Xp µψ ,,  

( ) ( )ss fJfJ φµψφλφ ,;,,,;,, pq ≤                                                                                                           (25) 

where we use the spaces ( ) ( ) ( ){ }Π×Π∈= 11, HqX Hφ  and  ( ){ }Γ∈= − 2/1HM λ .                                                           

This yields: 

( )
( ) ( )( ) ( )( ) ( )( ) ( )
( )( ) ( )








∈∀=
∈∀=+

×∈

Mgb
lba

M

µµµφ
ψψλψψφ

λφ

,,
,,,,,,,

thatsuch,,Find

q
Xppppq

Xq
                                                                    (26) 
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where 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )pqpqpqpq ×∇×∇+−∇−∇+⋅∇−⋅∇−= ,,,,,, ψφψφa                                (27) 

( )( ) λψλψ ,,, =pb                                                                                                                                  (28) 

( )( ) ( )( )pp ⋅∇−= ,, fl ψ                                                                                                                             (29) 

( ) µφµ ,sg = .                                                                                                                                          (30) 

The solution of problem, Eq.(21), will be the restriction to Ω  of the  minimum, defined on domain Π , of 
functional Eq.(24). 

4.3 Spectral Element approximation 
The problem Eq.(26) can not be solved analytically and therefore it is necessary to use a numerical method 
to get approximated solution.  

The spectral hp element method is a numerical technique for solving partial differential equations based on  
variational formulation of boundary and initial value problems [4][10][20]. The solution is represented by 
a finite number of basis functions. Spectral hp element method is based on higher order functions, which 
are locally defined over finite size parts of domain. The advantage of such kind of method respect to 
traditional finite element method is its exponential convergence property with the increasing of 
polynomial order p.  

We proceed to define a discrete problem by choosing appropriate finite element subspaces for φ , each of 
the components of the vector valued function q  and Lagrange multiplier λ .  

There are no restrictive compatibility conditions on the discrete spaces of the primary variables φ  and q , 
so we choose the same finite element subspace for each one. The only requirement on approximating 
spaces is that we choose continuous piecewise polynomials that are at least bi-linear in two dimensions or 
tri-linear in three dimensions.   

Consider the two-dimensional case and let Ph be a family of quadrilateral finite elements eΩ  that make up 

the connected  model hΩ . We map eΩ  to a  bi-unit square [ ] [ ]1,11,1ˆ −×−=Ωe , where ( )ηξ ,  is a point 

in  eΩ̂ . Over a typical element  eΩ̂ , we approximate φ  by the expression 

( ) ( )∑
=

Ω=
q

i
eii in

1

.ˆ,, ηξϕφηξφ
�

                                                                                                         (31) 

In modal expansion, iϕ  are tensor products of the one-dimensional C0 p-type hierarchical basis 
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












=
+

≥<<
+−

=
−

= −

Ppfor

PPpforP

pfor

pp

2
1

1,0
2

1
2

1

0
2

1

,
1

ξ

ξξ

ξ

ψ βα                                                                            (32) 

and iφ
�

 are coefficients associated with each of the modes of hierarchical basis. In Eq.(32) βα ,
pP  are the 

Jacobi polynomials  of order p, in particular ultraspheric polynomials corresponding to the choice βα =  
with 1== βα . This choice is due to the considerations about the sparsity of the matrices we obtain 
discretizing the problem presented by [10].  

 

Figure 8: Shape of modal expansion modes for a polynomial order of P=5. 

We approximate the components of the vector valued function q  on eΩ̂  in similar manner as we did for 
φ  in Eq.(31).  

The approximation of Lagrange multipliers requires the discretization of the immersed boundary Γ  into 
curvilinear one-dimensional elements eΓ , which are mapped to linear unit elements [ ]1,1ˆ −=Γe . On these 
elements the function λ  is approximated by the expression 

( ) ( )∑
=

Γ=
q

i
eii on

1

ˆξψλξλ
�

                                                                                                                (33) 

where iψ  are defined in Eq.(32)  and iλ
�

 are the coefficients associated with expansion modes of function 
λ .  
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Let us remark the choice of Lagrange multipliers discrete space is not independent by the discrete spaces 
of variables φ  and q . To ensure the convergence of the solution of discretized model to that one of the 
continuous problem, the Ladyzhenskaja-Babuska-Brezzi (LBB)-condition has to be satisfied: 

( ) ( ) HPHPMHP

Hhp

hpHP

H
M

ds

hphp

∈∀≥
Π

∫Γ

Π∈
µµβ

ψ

ψµ

ψ
1

1
sup                                                                              (34) 

for some 0>β  independent of hp and HP.  

In this way we proceed to generate a system of linear algebraic equations at element level. The integrals in 
these equations are evaluated using Gauss-Legendre quadrature rules. The  global  system  of  equations  is  
assembled  from  the  element  contributions  using  the  direct summation approach. The assembled 
system of equations can be written as  









=
















g
fy

0B
BA

λ
�
�T

                                                                                                                                (35) 

where y�  are the modal unknown coefficients associated with φ  and q , λ
�

 are the modal unknown 
coefficients associated with λ , A  is the least squares matrix, B  is the matrix coupling the primal 
variables φ  and q  and the Lagrange multiplier λ , f  is the load vector and g  is the constraint vector. To 
solve the system Eq.(35) we use a direct method. Note that the information on the geometry of domain is 
encoded only in B  and g , not in  A  or f . So if we want to solve the same heat conduction equation on a 
different domain Ω  we have just to calculate again the matrix B  and the vector g , because A  and f  
will not change. 

4.4 Numerical example 
We solve the convection-diffusion equation 

{ } ( )yxfT ,=∇⋅+∆− φφ 1                                                                                                                        (36) 

on pentagonal domain Ω  shown in Figure 9. On the boundary Γ  Robin constraints have been imposed. 
According to Method of Manufactured Solutions [25], the source term ( )yxf ,  and the boundary 
constraints are such that solution is the function ℜ→ℜ2:φ , so defined: 

( ) .1)(, 22 xyeyxyx +++−=φ                                                                                                                  (37) 
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Figure 9: Function φ, solution of problem Eq.(36). 

The fictitious domain considered is a square [ ] [ ]2.1,0.11.1,1.1 −×−=Π , containing Ω . In order to 
demonstrate the accuracy of the method, several numerical grids have been used for calculations, as shown 
in Figure 10. Computational domain Π  has been divided into four first and twenty-five after quadrilateral 
finite elements. The immersed boundary Γ  has been discretized into ten and fifty linear elements.  

   

(a)                                                 (b) 

   

(c)                                                (d) 

Figure 10: Numerical grids used for calculations.  The model of domain Π consists of: (a) four 
quadrilateral spectral elements with ten immersed boundary elements, (b) four quadrilateral 

spectral elements with fifty immersed boundary elements, (c) twenty-five quadrilateral spectral 
elements with ten immersed boundary elements, (d) twenty-five quadrilateral spectral elements 

with fifty immersed boundary elements. 

In Figure 11 the convergence of φ  is shown as function of the expansion order of domain in a linear-
logarithmic scale. Each curve corresponds to a different expansion order of Lagrange multipliers. These 
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curves are characterized by a minimum. We can observe if the number of immersed linear elements is low 
the curves with crescent expansion order move toward lower errors, on the contrary if the number of 
immersed linear elements is high the curves move toward higher errors. Interpolating the minimum values 
reached for each expansion order of domain p the convergence to exact solution is spectral. This behaviour 
depends on LBB-condition. The interpolating curve is pretty the same if we consider an identical 
discretization of domain Π , modifying just the Lagrange multiplier number of elements. Another remark 
is that the convergence of the interpolating curve is faster refining the discretized model of computational 
domain Π . 

   

(a)                                             (b) 

   

(c)                                            (d) 

Figure 11: Convergence of the function φ to the exact solution of problem Eq.(36) in the L2-norm. 
Numerical solution obtained with: (a) h discretization of fictitious domain shown in Figure 10 (a), 

(b) h discretization of fictitious domain shown in Figure 10 (b), (c) h discretization of fictitious 
domain shown in Figure 10 (c), (d) h discretization of fictitious domain shown in Figure 10 (d). 

5.0 THE DETERMINISTIC FORMULATION OF THE STOCHASTIC 
FICTITIOUS DOMAIN PROBLEM 

Let Θ∈θ  be a random realization drawn from a complete probability space ( )PA,,Θ , whose event 
space Θ  generates its σ -algebra Θ⊂ 2A  and is characterized by a probability measure P . For all   

Θ∈θ , let ( ) dℜ⊂Ω θ  be a d -dimensional random domain bounded by boundary ( )θΓ . We consider 
the following stochastic boundary value problem: for P-almost everywhere in Θ , find a stochastic 
solution ( ) ℜ→Ω θφ :  such that: 
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( )
( )θφφ
θφ

Γ=
Ω=∆−

on
inf

s

                                                                                                                      (38) 

where f  is the source term and sφ  is the prescribed value of φ  on stochastic boundary ( )θΓ .  This 
problem is chosen only for notational simplicity.  

We proceed by replacing the problem, Eq.(38), with its first-order equivalent system:  

Find ( )θφ ,x  and ( )θ,xq  such that 

( )
( )
( )
( )θφφ
θ
θφ
θ

Γ=
Ω=×∇
Ω=−∇
Ω=⋅∇−

on
in
in
inf

s

0
0

q
q
q

                                                                                                           (39) 

where q  is the flux of scalar function φ . 

The L2 least-squares functional associated with first-order equivalent system formulation is given by 

( ) ( ) ( ) ( )
2

,0

2

,0

2

,0 2
1

2
1

2
1;,

θθθ
φφ

ΩΩΩ
×∇+−∇+−⋅∇−= qqqq ffJ                                                      (40) 

and its Fictitious Domain implementation will be: 

( ) ( ) ( )θ
φφλφφλφ

ΓΠΠΠ
−+×∇+−∇+−⋅∇−=

,0

2

,0

2

,0

2

,0 2
1

2
1

2
1,;,, ss ffJ qqqq                          (41) 

where the Lagrange multiplier defined on Γ  is denoted by λ , with µ  the associated weight function.  

The least squares principles for functional Eq.(41) can be stated as:  

Find ( ) ( )θλφ M×∈ Xq,,  such that for all ( ) ( )θµψ M×∈ Xp,,  

( ) ( )ss fJfJ φµψφλφ ,;,,,;,, pq ≤                                                                                                           (42) 

where we use the spaces ( ) ( ) ( ){ }Π×Π∈= 11, HqX Hφ  and ( ) ( )( ){ }θλθ Γ∈= − 2/1HM . 

This yields: 

( ) ( )
( ) ( )( ) ( )( ) ( )( ) ( )
( )( ) ( ) ( )








∈∀=
∈∀=+

×∈

θµµµφ
ψψλψψφ

θλφ

Mgb
lba

M

,,
,,,,,,,

thatsuch,,Find

q
Xppppq

Xq
                                                                       (43) 

where 
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( ) ( )( ) ( )( )

( ) ( ) ( ) ( )∫∫

∫

ΠΠ

Π

Π×∇⋅×∇+Π−∇⋅−∇

+Π⋅∇−⋅∇−=

dd

da

pqpq

pqpq

ψφ

ψφ ,,,
                                                                                   (44) 

( )( )
( )
∫

Γ

Γ=
θ

ψλλψ db ,,p                                                                                                                               (45) 

( )( ) ( )∫
Π

Π⋅∇−= dfl pp,ψ                                                                                                                         (46) 

( )
( )
∫

Γ

Γ=
θ

µφµ dg s .                                                                                                                                      (47) 

The solution of problem, Eq.(38), will be the restriction to ( )θΩ  of the  minimum, defined on domain Π , 
of functional Eq.(42). 

The saddle point problem Eq.(43) has a stochastic formulation. We assume that the boundary ( )θ,xΓ  of 
( ) ( )xx Π⊂Ω θ,  depends on θ  via n  mutually independent real random variables ( )θξ  with zero mean 

and unit variance with respect to a density function ρ  defined on some interval ℜ∈I , so that nI=I . 
Referring to Eq.(6) we can write the stochastic process as 

( ) ( ) ( ) ( ).,,
0

* ∑
=

Γ=Γ≅Γ
N

i
ii H ξxxx θθ                                                                                                          (48) 

Substituting the polynomial Chaos series into Eq.(43) we obtain 

( ) ( ) ( )
( ) ( )( ) ( )( ) ( )( ) ( ) ( )
( )( ) ( ) ( )





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
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thatsuch;;,,Find
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µµµφ

ψψλψψφ

λφ

                                               (49) 

where 

( ) ( ) ( )∑
=

=
N

i
ii H

0

* , ξxx φθφ                                                                                                                            (50) 

( ) ( ) ( )∑
=

=
N

i
ii H

0

* , ξxqxq θ                                                                                                                           (51) 

( ) ( ) ( )∑
=

=
N

i
ii H

0

* , ξxx λθλ                                                                                                                           (52) 

and ( ){ }*21** Γ∈= −HM λ . In this way we divide the random process into a deterministic part and a 
stochastic part. To solve Eq.(49) the method of Weighted Residuals is adopted, in particular the 
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Collocation projection. This formulation gives a linear system of decoupled equations equivalent to 
solving a deterministic problem at each grid point: 

( )
( ) ( )( ) ( )( ) ( )( ) ( )
( )( ) ( )








∈∀=
∈∀=+

×∈
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µµµφ
ψψλψψφ
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,,
,,,,,,,

thatsuch,,Find

q
Xppppq

Xq
                                                           (53) 

with Ni ,,0…=  where ( ){ }iii HM Γ∈= − 21λ . To reconstruct the stochastic solution ( )θφ ,x  the 
equations Eq.(12) and Eq.(13)  are used. 

6.0 APPLICATIONS OF CHAOS COLLOCATION METHOD WITH 
FICTITIOUS DOMAIN APPROACH 

6.1 One-dimensional problem 
To validate the proposed methodology, we consider the one-dimensional problem defined on stochastic 
domain given in Eq.(17). The analytic solution of this problem, if the length L  of domain is a 
deterministic variable, writes as:  

( ) ( ) ( )
( ) ( ) LkLk

xkLkxkLk

ekek
eekeek

k
x

−

−−

−−+
−++

=
11
110φφ .                                                                                (54) 

As we know the analytic function ( )xφ , given the uncertainty on the length L , we can compute the 
probability density function ( )φpdf , using the formulation [27]: 

( )
( )

( ) ( )
( )

( )
( )

( )
( )n

nXXX
Z

X

xf
xp

xf
xp

xf
xpzp

xpwithiablerandomX
XfZ

'''

var

2

2

1

1 +++=

=

…

                                                                                               (55) 

where x  is the random variable with distribution ( )xpX , Z  is the random output variable and nxx ,,1 …  

are the inverses of Z ( ( )zfxi
1−= ). 

To verify the accuracy of the presented methodology, the coupling of Chaos Collocation and Fictitious 
Domain for geometric uncertainties, we compare the results obtained by proposed method to the analytical 

( )φpdf  in three points (x1=0.0, x2=45.0, x3=90.0). In [36] it has been already demonstrated as the Monte 
Carlo method, the methodology mainly used for studying of uncertainties, is not as accurate as Polynomial 
Chaos approximation and with higher computational cost, so we will not consider Monte Carlo method for 
comparison. 
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Figure 12: Solution of problem Eq.(17): analytical pdf(φ) and comparison of error respect to 
analytical pdf(φ) of Chaos Collocation pdf(φ) with different expansion order P in x1=0.0. 

φ

P
(

)

E
rr

or
P

(
)

9.6 9.8 10 10.2
0

1

2

3

4

10-7

10-6

10-5

10-4

10-3

10-2

Analitycal Pdf
Pdf Error P=1
Pdf Error P=2
Pdf Error P=3

φ

φ

 

Figure 13: Solution of problem Eq.(17): analytical pdf(φ) and comparison of error respect to 
analytical pdf(φ) of Chaos Collocation pdf(φ) with different expansion order P in  x2=45.0. 
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Figure 14: Solution of problem Eq.(17): analytical pdf(φ) and comparison of error respect to 
analytical pdf(φ) of Chaos Collocation pdf(φ) with different expansion order P in  x3=90.0. 
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In Figure 12, Figure 13 and Figure 14 the accuracy of pdf obtained by our approach is shown for 
increasing polynomial order. It is evident the accuracy is pretty much the same in different points of 
domain and the accuracy improves visibly increasing the polynomial order from P=1 to P=3. 

In Figure 15 the evolution of temperature is plotted in error bars, with the line centered at the mean value 
( )φE  and  the length of uncertainty bars equal to two standard deviations, which is the interval containing 

99% of all possible values. There is an increase of uncertainty bars with growing abscissa and a 
corresponding decrease of mean value of temperature. This behaviour is due to higher closeness to the 
uncertain point ( ( )1,100NL = ) with growing abscissa and a greater influence of uncertainty to points 
closer to that one.  
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Figure 15: Mean function E(φ) and uncertainty bars E(φ) ± σ of problem Eq.(17). 

This example demonstrates the capability of developed methodology, so we can use it to study a two-
dimensional problem with geometric tolerance. 

6.2 Two-dimensional problem 
In this section we consider the stationary heat conduction in an electronic chip [35], subject to geometric 
tolerances: 

( ) ( )θΩ=∇⋅∇− infTk                                                                                                              (56) 

with 1=k  and 0=f . The stochastic domain is shown in Figure 16. The domain dimensions are 
deterministic parameters except thickness of cavity L  which has a normal distribution ( )01.0,6.0N . The 
boundary of domain consists of four segments: the top TΓ , the bottom BΓ , the two sides SΓ  and the 
boundaries of the cavity CΓ . Adiabatic boundary conditions are prescribed on BΓ  and SΓ . The cavity 

boundary CΓ  is exposed to heat flux 1=
ΓC

bq . On the top TΓ  is maintained at constant temperature 

0=T .  
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Figure 16: Stochastic domain of stationary heat conduction problem Eq.(56) in an electronic 
chip. 

Figure 17 shows the computational domain which differs from chip geometry and in particular contains it, 
according to Fictitious Domain approach. The fictitious domain has been discretized into 15 spectral 
elements of order 8. 
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Figure 17: Schematic of the computational fictitious domain of stationary heat conduction 
problem Eq.(56) under study. 

We are interested in the stochastic solution at the points of domain. Actually we solve the heat conduction 
problem on all the points of fictitious domain and we associate to each point the probability of belonging 
to the chip, as shown in Figure 18 for the top left corner of the cavity. In this way we have the mean and 
the standard deviation of temperature due to geometric tolerance even in points which do not really belong 
to chip, but as we associate a probability of belonging the results are still significant. 

 

Figure 18: Probability of points of fictitious domain to belong to chip. 

We verify the behaviour of accuracy of the method varying the polynomial order of Polynomial Chaos 
approximation. In Figure 19 and Figure 20 the comparison of mean solution and standard deviation 
respectively along the section x=0, which corresponds to the axis of symmetry of the electronic chip, are 
shown, obtained with polynomial order P=1, P=2, P=3. The curves of mean coincide, but we have 
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different accuracy of standard deviation with increasing P. For values higher of 3 there are not significant 
variations of solution, so there is no need to increase P further more, taking into account of computational 
cost, too. 
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Figure 19: Comparison of mean solution along the section x=0 obtained by Chaos Collocation 
with polynomial order P=1, P=2, P=3. 
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Figure 20: Comparison of standard deviation along the section x=0 obtained by Chaos 
Collocation with polynomial order P=1, P=2, P=3. 

Figure 21 shows the contours of mean field of temperature and Figure 22 shows the contours of standard 
deviation. It is seen that the largest output uncertainty, indicated by the standard deviation, occurs near the 
top of the cavity, whose position is subject to probability distribution. In fact this is the result we expected 
according to results obtained studying one-dimensional problem in section 6.0. This behaviour is due to 
greater influence of uncertainty to points closer to that one.  
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Figure 21: Contours of temperature distributions in the electronic chip: mean field. 
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Figure 22: Contours of temperature distributions in the electronic chip: standard deviation field. 

7.0 CONCLUSIONS 

In this paper we presented the Chaos Collocation method employing a Fictitious Domain approach to 
study geometric tolerances. In particular the method has been applied to one- and two-dimensional elliptic 
problems with geometric uncertainties in order to demonstrate the accuracy and convergence of the 
methodology.  

A big advantage of proposed method is that it is non-intrusive, which means existing deterministic solvers 
can be used without any internal modification. In this way we get a simplification of computational 
process management. A Least-Squares Spectral Element method has been employed for the analysis of 
deterministic differential problems obtained by Collocation projection. To avoid remeshing of 
computational domain for each one of differential problems, Fictitious Domain approach is introduced. Its 
main advantage lies in the fact that only one Cartesian mesh, that represents the enclosure, needs to be 
generated.  

Excellent accuracy properties of the method are demonstrated by numerical experiments. We have 
compared it to analytical solution, considering a one-dimensional elliptic problem with uncertainties on 
domain length. The algorithm has been finally used to solve a two-dimensional heat conduction problem 
with random domain. 

Several issues need to be addressed: 

•  Comparison between Chaos Polynomial and Chaos Collocation methods: in case of multiple 
uncertain parameters the number of coefficients is lower using an intrusive approach, but it is 
evident the difficulty to implement it inside the solver; taking in account of both these remarks, it 
would be interesting evaluate computational benefits of the two approaches; 
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•  problems with multi dimensional stochastic domain by Chaos Collocation: the choice of 
collocation points in case of multiple uncertain parameters is not unique, so an effective criteria 
should be given; 

•  fluid dynamic problems defined on stochastic domain: the Fictitious Domain approach has been 
implemented just to solve advection-diffusion equation; even if the theory is simple to be 
extended to fluid dynamic case, the implementation and validation of the methodology have still 
to be achieved. 
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Paper No. 36 
 
Discusser’s Name: M. Hemsch 
 
Question: Are you working on the effective choice of collocation points? What approaches are you using? 
 
Author’s Reply: For problems with one uncertain parameter the collocation points are the roots of 
polynomial of order p+1. If we have multi-uncertain parameters, we will use the full-factorial of these 
roots. 
 
Discusser’s Name: A. Cunningham 
 
Question: Are your collocation points chosen on the basis of polynomial roots such as roots of 
Tchebycheff polynomials? 
 
Author’s Reply: The collocation points are the roots of a Hermite polynomial (for Gaussian uncertainty) 
with order p+1, where p is the expansion order of the polynomial chaos approximation. 
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